22 research outputs found

    Modeling human pediatric and adult gliomas in immunocompetent mice through costimulatory blockade

    No full text
    Currently, human glioma tumors are mostly modeled in immunodeficient recipients; however, lack of interactions with adaptive immune system is a serious flaw, particularly in the era when immunotherapies dominate treatment strategies. Our group was the first to successfully establish the orthotopic transplantation of human glioblastoma (GBM) in immunocompetent mice by inducing immunological tolerance using a short-term, systemic costimulation blockade strategy (CTLA-4-Ig and MR1). In this study, we further validated the feasibility of this method by modeling pediatric diffuse intrinsic pontine glioma (DIPG) and two types of adult GBM (GBM1, GBM551), in mice with intact immune systems and immunodeficient mice. We found that all three glioma models were successfully established, with distinct difference in tumor growth patterns and morphologies, after orthotopic xenotransplantation in tolerance-induced immunocompetent mice. Long-lasting tolerance that is maintained for up to nearly 200 d in GBM551 confirmed the robustness of this model. Moreover, we found that tumors in immunocompetent mice displayed features more similar to the clinical pathophysiology found in glioma patients, characterized by inflammatory infiltration and strong neovascularization, as compared with tumors in immunodeficient mice. In summary, we have validated the robustness of the costimulatory blockade strategy for tumor modeling and successfully established three human glioma models including the pediatric DIPG whose preclinical study is particularly thwarted by the lack of proper animal models

    MRI-guided intracerebral convection-enhanced injection of gliotoxins to induce focal demyelination in swine.

    No full text
    Demyelinating disorders such as multiple sclerosis (MS) or transverse myelitis are devastating neurological conditions with no effective cure. Prevention of myelin loss or restoration of myelin are key for successful therapy. To investigate the disease and develop cures animal models with good clinical relevance are essential. The goal of the current study was to establish a model of focal demyelination in the brain of domestic pig using MRI-guided gliotoxin delivery. The rationale for developing a new myelin disease model in the domestic pig was based on the fact that the brain in pigs is anatomically and histologically much more similar to that of humans compared to the rodent brain. For MRI-assisted gliotoxin injection, eight 30 kg pigs were subjected to treatment with lysolecithin (20, 30 mg/ml); or with ethidium bromide (0.0125, 0.05, 0.2 mg/ml). Animals were placed in an MRI scanner for intraparenchymal targeting of gliotoxin into the corona radiata (250 μl over 1h), with real-time monitoring of toxin distribution on T1 scans and monitoring of lesion evolution over seven days using both T1 and T2 scans. After the last MRI, animals were transcardially perfused and brains were processed for histological and immunofluorescent analysis. Gadolinium-enhanced T1 MRI during injection demonstrated biodistribution of the contrast (as a surrogate marker for toxin distribution) and its diffusion through the brain parenchyma. Lesion induction was confirmed on T2-weighted MRI and histopathology, thus enabling the establishment of optimal doses of gliotoxins. To conclude, MRI-guided focal demyelination in swine is accurate and provides real-time confirmation of gliotoxin, thus facilitating placement of focal lesions with high precision. This new model of focal demyelination can be used for further investigation and development of novel therapeutic approaches
    corecore